Diagnostics of Coherent Eddy Transport in the South China Sea Based on Satellite Observations

Author:

Liu TongyaORCID,He YinghuiORCID,Zhai Xiaoming,Liu XiaohuiORCID

Abstract

The large discrepancy between Eulerian and Lagrangian work motivates us to examine the leakage of Eulerian eddies and quantify the contribution of coherent eddy transport in the South China Sea (SCS). In this study, Lagrangian particles with a resolution of 1/32° are advected by surface geostrophic currents derived from satellite observations spanning 23 years, and two types of methods are employed to identify sea surface height (SSH) eddies and Lagrangian coherent structures. SSH eddies are proven to be highly leaky during their lifetimes, with more than 80% of the original water leaking out of the eddy interior. As a result of zonal and meridional eddy propagation, the leaked water exhibits a spatial pattern of asymmetry relative to the eddy center. The degree of eddy leakage is found to be independent of several eddy parameters including the nonlinearity parameter U/c, which has been commonly used to assess eddy coherency. Finally, the Lagrangian coherent structures in the SCS are diagnosed and the associated coherent eddy diffusivity is calculated. It is found that coherent eddies contribute to less than 5% of the total eddy material transport in both zonal and meridional directions. These findings suggest that previous studies based on the Eulerian framework significantly overestimate the contribution of coherent eddy transport in the SCS.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3