Ice Detection with Sentinel-1 SAR Backscatter Threshold in Long Sections of Temperate Climate Rivers

Author:

Stonevicius EdvinasORCID,Uselis Giedrius,Grendaite DaliaORCID

Abstract

Climate change leads to more variable meteorological conditions. In many Northern Hemisphere temperate regions, cold seasons have become more variable and unpredictable, necessitating frequent river ice observations over long sections of rivers. Satellite SAR (Synthetic Aperture Radar)-based river ice detection models have been successfully applied and tested, but different hydrological, morphological and climatological conditions can affect their skill. In this study, we developed and tested Sentinel-1 SAR-based ice detection models in 525 km sections of the Nemunas and Neris Rivers. We analyzed three binary classification models based on VV, VH backscatter and logistic regression. The model sensitivity and specificity were used to determine the optimal threshold between ice and water classes. We used in situ observations and Sentinel-2 Sen2Cor ice mask to validate models in different ice conditions. In most cases, SAR-based ice detection models outperformed Sen2Cor classification because Sen2Cor misclassified pixels as ice in areas with translucent clouds, undetected by the scene classification algorithm, and misclassified pixels as water in cloud or river valley shadow. SAR models were less accurate in river sections where river flow and ice formation conditions were affected by large valley-dammed reservoirs. Sen2Cor and SAR models accurately detected border and consolidated ice but were less accurate in moving ice conditions. The skill of models depended on how dense the moving ice was. With a lowered classification threshold and increased model sensitivity, SAR models detected sparse frazil ice. In most cases, the VV polarization-based model was more accurate than the VH polarization-based model. The results of logistic and VV models were highly correlated, and the use of VV was more constructive due to its simpler algorithm.

Funder

Vilnius University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3