Superplastic Deformation of Al–Cu Alloys after Grain Refinement by Extrusion Combined with Reversible Torsion

Author:

Rodak Kinga,Kuc Dariusz,Mikuszewski Tomasz

Abstract

The binary as-cast Al–Cu alloys Al-5%Cu, Al-25%Cu, and Al-33%Cu (in wt %), composed of the intermetallic θ-Al2Cu and α-Al phases, were prepared from pure components and were subsequently severely plastically deformed by extrusion combined with reversible torsion (KoBo) to refinement of α-Al and Al2Cu phases. The extrusion combined with reversible torsion was carried out using extrusion coefficients of λ = 30 and λ = 98. KoBo applied to the Al–Cu alloys with different initial structures (differences in fraction and phase size) allowed us to obtain for alloys (Al-25%Cu and Al-33%Cu), with higher value of intermetallic phase, large elongations in the range of 830–1100% after tensile tests at the temperature of 400 °C with the strain rate of 10−4 s−1. The value of elongation depended on extrusion coefficient and increase, with λ increasing as a result of α-Al and Al2Cu phase refinement to about 200–400 nm. Deformation at the temperature of 300 °C, independently of the extrusion coefficient (λ), did not ensure superplastic properties of the analyzed alloys. A microstructural study showed that the mechanism of grain boundary sliding was responsible for superplastic deformation.

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. The effect of alloying elements on superplasticity in an ultrafine-grained aluminum alloy;Islamgaliev;Rev. Adv. Mater. Sci.,2010

2. Recent Development of Superplasticity in Aluminum Alloys: A Review

3. A Review on Superplastic Formation Behavior of Al Alloys

4. On the mechanisms of superplasticity in Ti–6Al–4V

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3