A Tuned Microwave Resonant System for Subcutaneous Imaging

Author:

Bing Sen1ORCID,Chawang Khengdauliu1ORCID,Chiao Jung-Chih1ORCID

Affiliation:

1. Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA

Abstract

A compact and planar imaging system was developed using a flexible polymer substrate that can distinguish subcutaneous tissue abnormalities, such as breast tumors, based on electromagnetic-wave interactions in materials where permittivity variations affect wave reflection. The sensing element is a tuned loop resonator operating in the industrial, scientific, and medical (ISM) band at 2.423 GHz, providing a localized high-intensity electric field that penetrates into tissues with sufficient spatial and spectral resolutions. The resonant frequency shifts and magnitudes of the reflection coefficients indicate the boundaries of abnormal tissues under the skin due to their high contrasts to normal tissues. The sensor was tuned to the desired resonant frequency with a reflection coefficient of −68.8 dB for a radius of 5.7 mm, with a tuning pad. Quality factors of 173.1 and 34.4 were achieved in simulations and measurements in phantoms. An image-processing method was introduced to fuse raster-scanned 9 × 9 images of resonant frequencies and reflection coefficients for image-contrast enhancement. The results showed a clear indication of the tumor’s location at a depth of 15 mm and the capability to identify two tumors both at the depth of 10 mm. The sensing element can be expanded to a four-element phased array for deeper field penetration. Field analysis showed the depths of −20 dB attenuation were improved from 19 to 42 mm, giving wider coverage in tissues at resonance. Results showed that a quality factor of 152.5 was achieved and a tumor could be identified at a depth of up to 50 mm. In this work, simulations and measurements were conducted to validate the concept, showing great potential for subcutaneous imaging in medical applications in a noninvasive, efficient, and lower-cost way.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer libraries used in analysis of dermatological images with computational vision: a literature review;Revista científica de sistemas e informática;2024-01-10

2. A Tuned Microwave Resonant Sensor for Skin Cancerous Tumor Diagnosis;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3