Assessment of the Undrained Shear Strength and Settlement of Organic Soils under Embankment Loading Using Artificial Neural Networks

Author:

Lechowicz ZbigniewORCID,Sulewska Maria JolantaORCID

Abstract

In engineering practice, due to the high compressibility and very low shear strength of organic soils, it is difficult to construct an embankment on organic subsoil. High variability and significant change in geotechnical parameters cause difficulties in predicting the behavior of organic soils under embankment loading. The aim of the paper was to develop empirical relationships used in the preliminary design for evaluating the settlement and undrained shear strength of organic subsoil loaded by embankment based on data obtained from four test sites. Statistical multiple regression models were developed for evaluating the settlement in time and undrained shear strength in time individually for peat and gyttja. Neural networks to predict the settlement and undrained shear strength in time for peat and gyttja simultaneously as double-layer subsoils as well as a separate neural network for peat and a separate neural network for gyttja as single-layer subsoils were also developed. The vertical stress, thickness, water content, initial undrained shear strength of peat and gyttja, and time were used as the independent variables. Artificial neural networks are characterized by greater prediction accuracy than statistical multiple regression models. Multiple regression models predict dependent variables with maximum relative errors of about 35% to about 60%, and neural networks predict output variables with maximum relative errors of about 25% to about 30%.

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

General Materials Science

Reference60 articles.

1. Wolski, W., and Hartlen, J. (1996). Embankments on Organic Soils, Elsevier.

2. CUR (1996). CUR Building on Soft Soils, Routledge. Report 162.

3. Duncan, J.M., and Wright, S.G. (2005). Soil Strength and Slope Stability, John Willey & Sons.

4. Stability evaluation during staged construction;Ladd;J. Geotech. Eng. Div.,1991

5. Primary and secondary compression of clay and peat;Barden;Géotechnique,1968

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3