The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene

Author:

Ghomsheh Mohammad ZareORCID,Khatibi Golta

Abstract

In the present investigation, statistical characterization of strain bursts observed during the load-controlled deformation of high-density polyethylene (HDPE), which arise within the crystalline phase during plastic deformation, was carried out via high-resolution nanoindentation creep experiments. Discrete deformation processes occurred during the nanoindentation creep tests, which indicated that they arose from the break-off of dislocation avalanches, i.e., dislocation climb is a possible mechanism for indentation creep deformation. Characterization of the strain bursts, in terms of the associated height and number, demonstrated that these quantities followed a Gaussian distribution depending on the load and loading rate. This analysis enabled the accurate measurement of creep activation energy. Our method used nanoindentation tests to measure the creep activation energy of HDPE within both the crystalline and amorphous phases. The activation energy of the creep process within the crystalline phase was evaluated using two methods. The frequency of jumps within the crystalline phase, as a function of the strain rate, showed two peaks related to the 5 nm and 10 nm jump sizes that corresponded to the block size within the crystalline lamellae. The results indicated that the intervals coincided with the mean free path of dislocations and the block grain boundaries acted as dislocation barriers. From the dependence of burst frequency on the strain rate and temperature, the activation energy and thermally activated length of the dislocation segment for the plastic slip activation were determined to be 0.66 eV and 20 nm, respectively. Both numbers fit well to the Peterson’s model for the nucleation and motion of thermally activated dislocation segments. A similar activation energy resulted from the differential mechanical analysis of the literature for the αI—transition, which occurred near room temperature in polyethylene. The transition was described as the generation of screw dislocation and its motion along a block grain boundary; therefore, this process is suggested to be the basic mechanism underlying the strain bursts observed in this study.

Funder

TU Wien

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3