Photoperiod Induces DNA Methylation Changes in the Melatonin Receptor 1A Gene in Ewes

Author:

He Xiaoyun1ORCID,Wang Wei1,Sun Wei23,Chu Mingxing1ORCID

Affiliation:

1. Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

3. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

Abstract

Research has shown that MTNR1A plays an essential role in the estrus cycle and seasonal reproduction changes in sheep. However, few people have focused on the DNA methylation of MTNR1A by season or photoperiod. In this study, using qPCR and Western blotting, we measured the MTNR1A expression in the hypothalamus of ovariectomized and estradiol-treated (OVX + E2) sheep under different photoperiod treatment conditions. Subsequently, the core promoter of the MTNR1A gene was identified, and its methylation level in sheep exposed to different photoperiod treatments was measured by pyrosequencing. The results showed that MTNR1A gene expression significantly differed between the short 42-day photoperiod (SP42) and the LP42 or combined SP-LP42 treatment groups (p < 0.05). In addition, we determined that the core MTNR1A promoter region was within 540 bp upstream of the transcriptional start site (TSS) and that the DNA methylation levels at CpG sites in the SP42 vs. LP42 and SP42 vs. SP-LP42 groups significantly differed. Finally, a significant negative correlation (p < 0.001) between gene expression and DNA methylation levels was revealed, suggesting that photoperiod may induce DNA methylation of the MTNR1A gene and thus change its expression. The findings provide valuable bases for the further study of seasonal reproduction in sheep.

Funder

Open Project of Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design

National Natural Science Foundation of China

Science and Technology Development Project of Jilin Province

Earmarked Fund for China Agriculture Research System of MOF and MARA

Agricultural Science and Technology Innovation Program of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3