Evaluation of Fatigue Characteristics of Aluminum Alloys and Mechanical Components Using Extreme Value Statistics and C-Specimens

Author:

Lee Jungsub,Park Sang-YounORCID,Choi Byoung-HoORCID

Abstract

In this study, the fatigue characteristics of aluminum alloys and mechanical components were investigated. To evaluate the effect of forging, fatigue specimens with the same chemical compositions were prepared from billets and forged mechanical components. To evaluate the cleanliness of the aluminum alloys, the cross-sectional area of specimens was observed, and the maximum inclusion sizes were obtained using extreme value statistics. Rotary bending fatigue tests were performed, and the fracture surfaces of the specimens were analyzed. The results show that the forging process not only elevated the fatigue strength but also reduced the scatter of the fatigue life of aluminum alloys. The fatigue characteristics of C-specimens were obtained to develop finite-element method (FEM) models. With the intrinsic fatigue properties and strain–life approach, the FEM analysis results agreed well with the test results.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference25 articles.

1. Analytical approach to stress concentration effects in aircraft materials;Peterson,1959

2. The effect of notches and non-metallic inclusions on the fatigue properties of high-strength steel;Nordberg,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3