Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions

Author:

Mehmood SikanderORCID,Srivastava Hari MohanORCID,Mohammed Pshtiwan OthmanORCID,Al-Sarairah EmanORCID,Zafar FizaORCID,Nonlaopon KamsingORCID

Abstract

In this work, we obtain some new integral inequalities of the Hermite–Hadamard–Fejér type for operator ω1,ω2-preinvex functions. The bounds for both left-hand and right-hand sides of the integral inequality are established for operator ω1,ω2-preinvex functions of the positive self-adjoint operator in the complex Hilbert spaces. We give the special cases to our results; thus, the established results are generalizations of earlier work. In the last section, we give applications for synchronous (asynchronous) functions.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference22 articles.

1. Über die Fourierreihen;II. Math. Naturwiss Anz. Ungar. Akad. Wiss.,1906

2. Hermite-Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces;Dragomir;Linear Algebra Appl.,2012

3. Ghazanfari, A.G., Shakoori, S., Barani, A., and Dragomir, S.S. (2013). Hermite-Hadamard type inequality for operator preinvex functions. arXiv.

4. The Hermite-Hadamard type inequalities for operator s-convex functions;Ghazanfari;J. Adv. Res. Pure Math.,2014

5. Some new inequalities of operator m-convex functions and applications for synchronous-asynchronous functions;Sala;Complex Anal. Oper. Theory,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3