Mathematical Description of the Aerodynamic Characteristics of Stationary Flows in a Vertical Conical Diffuser When Air Is Supplied through Various Tube Configurations

Author:

Plotnikov Leonid1ORCID

Affiliation:

1. Turbines and Engines Department, Ural Federal University named after the first President of Russia B.N. Yeltsin, Str. Mira, 19, 620002 Yekaterinburg, Russia

Abstract

Conical diffusers of various configurations are used in many kinds of technical equipment and manufacturing processes. Therefore, it is a relevant objective to obtain reliable experimental and mathematical data on the aerodynamic characteristics of diffusers. This article presents experimental data on the aerodynamics of stationary flows in a vertical conical diffuser when air is supplied through tubes with various cross sections (circle, square, and triangle). Instantaneous values of air flow velocity are measured with a constant-temperature hot-wire anemometer. Data are obtained on the velocity fields and turbulence intensity along the height and the diameter of the diffuser’s cylindrical part when air is supplied through tubes of various configurations. It is established that air supply through profiled tubes has a significant effect on the shape of the velocity field and turbulence intensity in a vertical conical diffuser. For example, higher values of turbulence intensity are typical of air supplied through profiled tubes (the differences reach 50%). A mathematical formulation (linear and exponential equations) of the change in the average speed and intensity of air flow turbulence along the height of the diffuser’s cylindrical part for various initial conditions and supply tube configurations is presented. The obtained findings will make it possible to refine mathematical models and update algorithms for engineering the design of diffusers for various engineering processes and pieces of technical equipment.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference29 articles.

1. Japikse, D., and Baines, N.C. (1998). Concepts ETI.

2. Idelchik, I.E. (1983). Aerohydrodynamics of Technological Apparatuses (Inlet, Outlet and Distribution of the Flow over the Cross Section of the Devices), Mashinostroenie. (In Russian).

3. Emmons, H.W. (2015). Fundamentals of Gas Dynamics, Princeton University Press.

4. Hirsch, C. (2007). Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, Elesvier.

5. Yavuz, M., and Sene, N. (2020). Approximate solutions of the model describing fluid flow using generalized ρ-laplace transform method and heat balance integral method. Axioms, 9.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3