An Expectation-Maximization Algorithm for Combining a Sample of Partially Overlapping Covariance Matrices

Author:

Akdemir Deniz1ORCID,Somo Mohamed2,Isidro-Sanchéz Julio3ORCID

Affiliation:

1. Center of International Bone Marrow Transplantation Research, Minneapolis, MN 55401, USA

2. Syngenta Seeds, Junction City, KS 66441, USA

3. Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria, Universidad Politécnica de Madrid, 28223 Madrid, Spain

Abstract

The generation of unprecedented amounts of data brings new challenges in data management, but also an opportunity to accelerate the identification of processes of multiple science disciplines. One of these challenges is the harmonization of high-dimensional unbalanced and heterogeneous data. In this manuscript, we propose a statistical approach to combine incomplete and partially-overlapping pieces of covariance matrices that come from independent experiments. We assume that the data are a random sample of partial covariance matrices sampled from Wishart distributions and we derive an expectation-maximization algorithm for parameter estimation. We demonstrate the properties of our method by (i) using simulation studies and (ii) using empirical datasets. In general, being able to make inferences about the covariance of variables not observed in the same experiment is a valuable tool for data analysis since covariance estimation is an important step in many statistical applications, such as multivariate analysis, principal component analysis, factor analysis, and structural equation modeling.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference39 articles.

1. Data integration in the era of omics: Current and future challenges;Abugessaisa;BMC,2014

2. Integrative analysis of the cancer transcriptome;Rhodes;Nat. Genet.,2005

3. Meta-analysis methods for genome-wide association studies and beyond;Evangelou;Nat. Rev. Genet.,2013

4. A scalable method for integration and functional analysis of multiple microarray datasets;Huttenhower;Bioinformatics,2006

5. Sparse group penalized integrative analysis of multiple cancer prognosis datasets;Liu;Genet. Res.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3