A Certain Class of Equi-Statistical Convergence in the Sense of the Deferred Power-Series Method

Author:

Srivastava Hari Mohan1234ORCID,Jena Bidu Bhusan5ORCID,Paikray Susanta Kumar6ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

3. Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

4. Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan

5. Faculty of Science (Mathematics), Sri Sri University, Cuttack 754006, India

6. Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, India

Abstract

In this paper, we expose the ideas of point-wise statistical convergence, equi-statistical convergence and uniform statistical convergence in the sense of the deferred power-series method. We then propose a relation connecting them, which is followed by several illustrative examples. Moreover, as an application viewpoint, we establish an approximation theorem based upon our proposed method for equi-statistical convergence of sequences of positive linear operators. Finally, we estimate the equi-statistical rates of convergence for the effectiveness of the results presented in our study.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference38 articles.

1. Zygmund, A. (1959). Trigonometric Series, Cambridge University Press.

2. Sur la convergence statistique;Fast;Colloq. Math.,1951

3. Sur la convergence ordinaire et la convergence asymtotique;Steinhaus;Colloq. Math.,1951

4. Product of deferred Cesàro and deferred weighted statistical probability convergence and its applications to Korovkin-type theorems;Jena;Univ. Sci.,2020

5. A new approach to Korovkin-type approximation via deferred Cesàro statistical measurable convergence;Jena;Chaos Solitons Fractals,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3