A Novel Non-Ferrous Metals Price Forecast Model Based on LSTM and Multivariate Mode Decomposition

Author:

Li Zhanglong1,Yang Yunlei1,Chen Yinghao23ORCID,Huang Jizhao1

Affiliation:

1. School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China

2. School of Mathematics and Statistics, Central South University, Changsha 410083, China

3. Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo 315201, China

Abstract

Non-ferrous metals are important bulk commodities and play a significant part in the development of society. Their price forecast is of great reference value for investors and policymakers. However, developing a robust price forecast model is tricky due to the price’s drastic fluctuations. In this work, a novel fusion model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Singular Spectrum Analysis (SSA), and Long Short-Term Memory (LSTM) is constructed for non-ferrous metals price forecast. Considering the complexity of their price change, the dual-stage signal preprocessing which combines CEEMDAN and SSA is utilized. Firstly, we use the CEEMDAN algorithm to decompose the original nonlinear price sequence into multiple Intrinsic Mode Functions (IMFs) and a residual. Secondly, the component with maximum sample entropy is decomposed by SSA; this is the so-called Multivariate Mode Decomposition (MMD). A series of experimental results show that the proposed MMD-LSTM method is more stable and robust than the other seven benchmark models, providing a more reasonable scheme for the price forecast of non-ferrous metals.

Funder

Guizhou Provincial Science and Technology Projects

Guizhou Provincial Education Department Higher Education Institution Youth Science Research Projects

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3