The Stability Analysis of Linear Systems with Cauchy—Polynomial-Vandermonde Matrices

Author:

Rehman Mutti-Ur1,Alzabut Jehad23ORCID,Fatima Nahid2ORCID,Rasulov Tulkin H.1

Affiliation:

1. Department of Mathematical Analysis, Bukhara State University, Bukhara 200100, Uzbekistan

2. Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Türkiye

Abstract

The numerical approximation of both eigenvalues and singular values corresponding to a class of totally positive Bernstein–Vandermonde matrices, Bernstein–Bezoutian structured matrices, Cauchy—polynomial-Vandermonde structured matrices, and quasi-rational Bernstein–Vandermonde structured matrices are well studied and investigated in the literature. We aim to present some new results for the numerical approximation of the largest singular values corresponding to Bernstein–Vandermonde, Bernstein–Bezoutian, Cauchy—polynomial-Vandermonde and quasi-rational Bernstein–Vandermonde structured matrices. The numerical approximation for the reciprocal of the largest singular values returns the structured singular values. The new results for the numerical approximation of bounds from below for structured singular values are accomplished by computing the largest singular values of totally positive Bernstein–Vandermonde structured matrices, Bernstein–Bezoutian structured matrices, Cauchy—polynomial-Vandermonde structured matrices, and quasi-rational Bernstein–Vandermonde structured matrices. Furthermore, we present the spectral properties of totally positive Bernstein–Vandermonde structured matrices, Bernstein–Bezoutian structured matrices, Cauchy—polynomial-Vandermonde structured matrices, and structured quasi-rational Bernstein–Vandermonde matrices by computing the eigenvalues, singular values, structured singular values and its lower and upper bounds and condition numbers.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference63 articles.

1. James, D., Ioana, D., Olga, H., and Plamen, K. (2008). Accurate and Efficient Expression Evaluation and Linear Algebra, Cambridge University Press. Acta Numerica.

2. Fallat, S.M., and Johnson, C.R. (2011). Totally Nonnegative Matrices, Princeton University Press.

3. Ando, T. (2010). Totally Positive Matrices, Cambridge University Press.

4. Case Matrices and Connections of Entrepreneurial Career Management Module;Andalib;Int. J. Entrep.,2019

5. The accurate and efficient solution of a totally positive generalized Vandermonde linear system;James;SIAM J. Matrix Anal. Appl.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3