Steam Gasification in a Fluidized Bed with Various Methods of In-Core Coal Treatment

Author:

Abaimov Nikolay1ORCID,Ryzhkov Alexander1,Tuponogov Vladimir1,Simbiriatin Leonid2ORCID,Dubinin Alexey1,Ding Lu3,Alekseenko Sergey14

Affiliation:

1. Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, 620002 Yekaterinburg, Russia

2. “Promyshlennyj Perlit”, 4b/35 V. Vysotsky Street, 620072 Yekaterinburg, Russia

3. Key Laboratory of Coal Gasification and Energy Chemical Engineering of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

4. Kutateladze Institute of Thermophysics SB RAS, 1 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia

Abstract

The aim of this work is to study coal steam gasification with various methods of coal in-core treatment in FB using a newly developed thermodynamic calculation method. A calculational study of subbituminous coal steam non-catalytic gasification was carried out using four different methods of coal in-core treatment in single-vessel multisectional fluidized-bed gasifiers. A semi-empirical model based on the entropy maximization thermodynamic method and “restricted equilibria” based on previously obtained experimental data has been developed. Based on thermodynamic calculations, the effect of the leading thermochemical processes and operating parameters of the fluidized bed (temperature, fluidization number, steam/coal ratio feed rate) was revealed. New information was obtained regarding the composition of char and syngas at the gasifier outlet, the syngas heating value, and the cold gas efficiency of the steam gasification of Borodinskiy subbituminous coal char. The results indicate the possibility of significantly accelerating and improving non-catalytic steam gasification in fluidized bed gasifiers through the appropriate organization of in-core coal treatment. Based on the results obtained, the following recommendation is made—when designing multi-section and multi-vessel steam-blown gasifiers, the ratio of residence times should be set in favor of increasing the coal residence time in the steam-blown carbonization zone. Structurally, this can be achieved by increasing the volume and/or area of the steam-blown carbonization section (vessel).

Funder

Ministry of Science and Higher Education of the Russian Federation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3