Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties

Author:

Ren Yanwei1,Dong Huanhe1,Zhao Baojun23ORCID,Fu Lei1ORCID

Affiliation:

1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

2. Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210098, China

3. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

In this study, the propagation of internal solitary waves in oceans at great depths was analyzed. Using multi-scale analysis and perturbation expansion, the basic equation is simplified to the classical Benjamin–Ono equation with variable coefficients. To better describe the propagation characteristics of solitary waves, we derived a higher-order variable-coefficient integral differential (Benjamin–Ono) equation. Subsequently, the bilinear form of the model was derived using Hirota’s bilinear method, and a multi-soliton solution was obtained. Based on the multi-soliton solution of the model, we further studied the interaction of the soliton, which led to the discovery of Mach reflection. Some conclusions were drawn, which are of potential value for further study of solitary waves in the ocean.

Funder

National Natural Science Foundation of China

Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3