Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems

Author:

Gao Liu1,Yu Guolin1,Han Wenyan2

Affiliation:

1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China

2. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

Abstract

This paper is devoted to the investigation of optimality conditions and saddle point theorems for robust approximate quasi-weak efficient solutions for a nonsmooth uncertain multiobjective fractional semi-infinite optimization problem (NUMFP). Firstly, a necessary optimality condition is established by using the properties of the Gerstewitz’s function. Furthermore, a kind of approximate pseudo/quasi-convex function is defined for the problem (NUMFP), and under its assumption, a sufficient optimality condition is obtained. Finally, we introduce the notion of a robust approximate quasi-weak saddle point to the problem (NUMFP) and prove corresponding saddle point theorems.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Ningxia Provincial of China

Key Research and Development Program of Ningxia

Natural Science Foundation of China

Key Project of North Minzu University

North Minzu University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference23 articles.

1. On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems;Khantree;Carpathian J. Math.,2019

2. Nonsmooth semi-infinite programming problems with mixed constraints;Kanzi;J. Math. Anal. Appl.,2009

3. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty;Sun;Optimization,2020

4. On Isolated/Properly Efficient Solutions in Nonsmooth Robust Semi-infinite Multiobjective Optimization;Pham;Bull. Malays. Math. Sci. Soc.,2023

5. Nondifferentiable fractional semi-infinite multiobjective optimization problems;Chuong;Oper. Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3