Abstract
For the successful application of brain-computer interface (BCI) systems, accurate recognition of electroencephalography (EEG) signals is one of the core issues. To solve the differences in individual EEG signals and the problem of less EEG data in classification and recognition, an attention mechanism-based multi-scale convolution network was designed; the transfer learning data alignment algorithm was then introduced to explore the application of transfer learning for analyzing motor imagery EEG signals. The data set 2a of BCI Competition IV was used to verify the designed dual channel attention module migration alignment with convolution neural network (MS-AFM). Experimental results showed that the classification recognition rate improved with the addition of the alignment algorithm and adaptive adjustment in transfer learning; the average classification recognition rate of nine subjects was 86.03%.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献