Abstract
The Ilizarov external fixator plays an important role in the correction of complex malformed limbs. Our purpose in this work was to reveal the transmission of adjustable forces between the external fixator and the broken bone, and express the stress distribution at the end of the broken bone during the orthopedic treatment. Firstly, the screw model of the fixator was established and the theoretical relationship between the adjustable force and the stress was obtained. A sheep tibia was taken as a representative research object and its ediTable 3D entity was obtained by CT scanning. Then the mechanical model of the fixator and tibia was built using the ABAQUS software. Correction experiments were performed on the sheep tibia to measure the adjustable/support forces and tensions of the tibia. The measured results were imported to the screw and mechanical model, and the theoretical and simulation values were calculated. The theoretical tensions calculated by the screw model had a similar shape and doubled the value compared with that of the measured results. The transfer efficiency between the two results was improved and kept at about 50% after the initial 2~3 periods. The maximum stress occurring at the surface of the broken bone end was near the Kirschner wire pinhole. The simulation results for the tensions from the mechanical model showed a similar change trend, and the value was slightly higher. A biomechanical model of the Ilizarov external fixator was derived and verified through calculations, simulations and experiments. The change law of the adjustable forces and the tensions existing in the broken sheep tibias is presented herein, and offers a helpful contribution to orthopedic treatment.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献