Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment

Author:

Mozgeris Gintautas,Juodkienė Vytautė,Jonikavičius Donatas,Straigytė Lina,Gadal Sébastien,Ouerghemmi WalidORCID

Abstract

One may consider the application of remote sensing as a trade-off between the imaging platforms, sensors, and data gathering and processing techniques. This study addresses the potential of hyperspectral imaging using ultra-light aircraft for vegetation species mapping in an urban environment, exploring both the engineering and scientific aspects related to imaging platform design and image classification methods. An imaging system based on simultaneous use of Rikola frame format hyperspectral and Nikon D800E adopted colour infrared cameras installed onboard a Bekas X32 manned ultra-light aircraft is introduced. Two test imaging flight missions were conducted in July of 2015 and September of 2016 over a 4000 ha area in Kaunas City, Lithuania. Sixteen and 64 spectral bands in 2015 and 2016, respectively, in a spectral range of 500–900 nm were recorded with colour infrared images. Three research questions were explored assessing the identification of six deciduous tree species: (1) Pre-treatment of spectral features for classification, (2) testing five conventional machine learning classifiers, and (3) fusion of hyperspectral and colour infrared images. Classification performance was assessed by applying leave-one-out cross-validation at the individual crown level and using as a reference at least 100 field inventoried trees for each species. The best-performing classification algorithm—multilayer perceptron, using all spectral properties extracted from the hyperspectral images—resulted in a moderate classification accuracy. The overall classification accuracy was 63%, Cohen’s Kappa was 0.54, and the species-specific classification accuracies were in the range of 51–72%. Hyperspectral images resulted in significantly better tree species classification ability than the colour infrared images and simultaneous use of spectral properties extracted from hyperspectral and colour infrared images improved slightly the accuracy over the 2015 image. Even though classifications using hyperspectral data cubes of 64 bands resulted in relatively larger accuracies than with 16 bands, classification error matrices were not statistically different. Alternative imaging platforms (like an unmanned aerial vehicle and a Cessna 172 aircraft) and settings of the flights were discussed using simulated imaging projects assuming the same study area and field of application. Ultra-light aircraft-based hyperspectral and colour-infrared imaging was considered to be a technically and economically sound solution for urban green space inventories to facilitate tree mapping, characterization, and monitoring.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference90 articles.

1. Remote Sensing and Image Interpretation;Lillesand,2008

2. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest

3. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions,2013

4. Urban Bird Diversity and Landscape Complexity: Species-environment Associations Along a Multiscale Habitat Gradient

5. Ecosystems and Human Well-Being: Synthesis,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3