Abstract
In the motion control of AUVs, especially those driven by multiple thrusters, the thruster misalignment and thrust loss cause the actual force and moment applied to the AUV to deviate from that desired, making accurate and fast motion control difficult. This paper proposes a sliding mode control method with dual-observer estimation for the AUV 3D motion control problem in the presence of thruster misalignment uncertainty and thrust loss uncertainty. Firstly, this paper considers the force and moment deviation as disturbances that vary with the controller output, and proposes the TD disturbance observer to address the problem of deviation caused by uncertainty in thruster misalignment. Secondly, this paper introduces the dynamics equation of thrust loss and designs the gain disturbance observer to estimate the thrust loss uncertainty during AUV navigation. The designed controller, verified by simulation and field tests, ensures that the AUV maintains better motion control despite thruster misalignment and thrust loss.
Funder
Natural Science Foundation of Heilongjiang Province
Shaanxi Provincial Water Conservancy Science and Technology Program
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献