Effects of the Chloroplast Fructose-1,6-Bisphosphate Aldolase Gene on Growth and Low-Temperature Tolerance of Tomato

Author:

Cai Bingbing,Ning Yu,Li Qiang,Li Qingyun,Ai Xizhen

Abstract

Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.

Funder

Introduce Talents Start-Up fund of State Key Laboratory of North China Crop Improvement and Regulation in Hebei Agricultural University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference60 articles.

1. Evolutionary implications of the human aldolase-A, -B, -C, and -pseudogene chromosome locations;Tolan;Am. J. Hum. Genet.,1987

2. Fructose-bisphosphate aldolases: an evolutionary history

3. Autotrophic carbon fixation in archaea

4. Both chloroplastic and cytosolic phosphofructoaldolase isozymes are present in the pea leaf nucleus

5. Evolution of aldolase;Rutter;Fed. Proc.,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3