An Improved WiFi Positioning Method Based on Fingerprint Clustering and Signal Weighted Euclidean Distance

Author:

Wang BoyuanORCID,Liu Xuelin,Yu Baoguo,Jia Ruicai,Gan Xingli

Abstract

WiFi fingerprint positioning has been widely used in the indoor positioning field. The weighed K-nearest neighbor (WKNN) algorithm is one of the most widely used deterministic algorithms. The traditional WKNN algorithm uses Euclidean distance or Manhattan distance between the received signal strengths (RSS) as the distance measure to judge the physical distance between points. However, the relationship between the RSS and the physical distance is nonlinear, using the traditional Euclidean distance or Manhattan distance to measure the physical distance will lead to errors in positioning. In addition, the traditional RSS-based clustering algorithm only takes the signal distance between the RSS as the clustering criterion without considering the position distribution of reference points (RPs). Therefore, to improve the positioning accuracy, we propose an improved WiFi positioning method based on fingerprint clustering and signal weighted Euclidean distance (SWED). The proposed algorithm is tested by experiments conducted in two experimental fields. The results indicate that compared with the traditional methods, the proposed position label-assisted (PL-assisted) clustering result can reflect the position distribution of RPs and the proposed SWED-based WKNN (SWED-WKNN) algorithm can significantly improve the positioning accuracy.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3