Design and Ground Performance Evaluation of a Multi-Joint Wheel-Track Composite Mobile Robot for Enhanced Terrain Adaptability

Author:

Gao Xin’an1ORCID,Guan Xiaorong1ORCID,Yang Yanlong2,Zhang Jingmin2

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. No. 208 Research Institute of China Ordnance Industries, Beijing 100081, China

Abstract

The tracked-wheeled mobile robot has gained significant attention in military, agricultural, construction, and other fields due to its exceptional mobility and off-road capabilities. Therefore, it is an ideal choice for reconnaissance and exploration tasks. In this study, we proposed a multi-jointed tracked-wheeled compound mobile robot that can overcome various terrains and obstacles. Based on the characteristics of multi-jointed robots, we designed two locomotion modes for the robot to climb stairs and established the kinematics/dynamics equations for its land movement. We evaluated the robot’s stability during slope climbing, its static stability during stair climbing, and its ability to cross trenches. Based on our evaluation results, we determined the key conditions for the robot to overcome obstacles, the maximum height it can climb stairs, and the maximum width it can cross trenches. Additionally, we developed a simulation model to verify the robot’s performance in different terrains and the reliability of its stair-climbing gait. The simulation results demonstrate that our multi-jointed tracked-wheeled compound mobile robot exhibits excellent reliability and adaptability in complex terrain, indicating broad application prospects in various fields and space missions.

Funder

National Defense Science and Technology Innovation District Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3