Affiliation:
1. Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia
Abstract
Network security problems arise these days due to many challenges in cyberspace. The malicious attacks on installed wide networks are rapidly spreading due to their vulnerability. Therefore, the user and system information are at high risk due to network attacks. To protect networks against these attacks, Network Intrusion Detection and Prevention Systems (NIDPS) are installed on them. These NIDPS can detect malicious attacks by monitoring abnormal behavior and patterns in network traffic. These systems were mainly developed using Artificial Intelligence (AI) algorithms. These intelligent NIDPS are also able to detect the attack type while detecting network attacks. Previous studies have proposed many NIDPS for network security. However, many challenges exist so far such as limited available data for training AI algorithms, class imbalance problems, and automated selection of the most important features. These problems need to be solved first, which will lead to the precise detection of network attacks. Therefore, the proposed framework used the highly imbalanced UNSW-NB15 dataset for binary and multiclass classification of network attacks. In this framework, firstly dataset normalization is applied using standard deviation and the mean of feature columns; secondly, an Improved Salp Swarm Algorithm (ISSA) is applied for automated feature selection separately on binary and multiclass subsets. Thirdly, after applying feature selection, the SMOTE–Tomek class balancing method is applied where at least four different ML classifiers are used for binary and multiclass classification. The achieved results outperformed as compared to previous studies and improved the overall performance of NIDPS.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献