Affiliation:
1. China Electric Power Research Institute, Beijing 100192, China
2. Active Structures Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
Abstract
This paper investigates system identification algorithms for modal identification of frame structures, such as a suspension bridge and an overhead transmission line-crossing frame, using ambient vibration measurements. The modal identification procedures include two novel blind source separation (BSS) algorithms, complexity pursuit method (CP) and generalized eigen decomposition method (GED), based on modern signal processing technology. Here, the frequency response function (FRF) method is introduced as an important reference to verify the effectiveness of the CP algorithm and GED algorithm. The effectiveness and accuracy of both types of algorithms are verified by numerical simulations and experiments on a suspension bridge. In addition, an engineering application of these two BSS methods is successfully implemented in an overhead transmission line-crossing frame. The results show that the two novel BSS learning rules (CP and GED) are capable of successfully identifying modal parameters of the civil structure under ambient excitation.
Funder
Science and Technology Research Project of State Grid
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献