Two-Level Integrity-Monitoring Method for Multi-Source Information Fusion Navigation

Author:

Chen Rui12,Zhao Long1ORCID

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

2. Department of Automation, North China Electric Power University, Baoding 071003, China

Abstract

To address the issue of integrity monitoring for a multi-source information fusion navigation system, a theoretical framework of two-level integrity monitoring is proposed. Firstly, at the system level, a system-integrity-monitoring method based on the Kalman filter weighted least-squares form is established to detect and isolate faulty navigation sources. Secondly, at the sensor level, considering the redundancy of the faulty navigation sources, this paper presents the design of a multi-mode comprehensive fault-detection method for non-redundant navigation sources. Additionally, an extended-dimension matrix optimized sensor-fault detection and verification method for redundant navigation sources is proposed. Finally, integrity risk allocation criteria are established based on the effectiveness of navigation sources to calculate the system protection level and trigger integrity alarms. The two-level integrity-monitoring method was tested on a multi-source information fusion navigation system integrated with an inertial navigation system (INS), global positioning system (GPS), BeiDou satellite navigation system (BDS), Doppler velocity log (DVL), barometric altimeter (BA), and terrain-aided navigation (TAN). Test results demonstrate that the proposed method can effectively isolate the faulty navigation source within 10 s. Furthermore, it can detect the faulty sensors within the faulty navigation sources, thereby enhancing the reliability and robustness of the multi-source information fusion navigation system.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

National key research and development program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3