Morphological Changes, Antibacterial Activity, and Cytotoxicity Characterization of Hydrothermally Synthesized Metal Ions-Incorporated Nanoapatites for Biomedical Application

Author:

Huang Ssu-Meng,Liu Shih-Ming,Chen Wen-ChengORCID,Ko Chia-LingORCID,Shih Chi-Jen,Chen Jian-ChihORCID

Abstract

The objective of this study was to prepare hydroxyapatite (HA) with potential antibacterial activity against gram-negative and gram-positive bacteria by incorporating different atomic ratios of Cu2+ (0.1–1.0%), Mg2+ (1.0–7.0%), and Zn2+ (1.0–7.0%) to theoretically replace Ca2+ ions during the hydrothermal synthesis of grown precipitated HA nanorods. This study highlights the role of comparing different metal ions on synthetic nanoapatite in regulating the antibacterial properties and toxicity. The comparisons between infrared spectra and between diffractograms have confirmed that metal ions do not affect the formation of HA phases. The results show that after doped Cu2+, Mg2+, and Zn2+ ions replace Ca2+, the ionic radius is almost the same, but significantly smaller than that of the original Ca2+ ions, and the substitution effect causes the lattice distance to change, resulting in crystal structure distortion and reducing crystallinity. The reduction in the length of the nanopatites after the incorporation of Cu2+, Mg2+, and Zn2+ ions confirmed that the metal ions were mainly substituted during the growth of the rod-shape nanoapatite Ca2+ distributed along the longitudinal site. The antibacterial results show that nanoapatite containing Cu2+ (0.1%), Mg2+ (3%), and Zn2+ (5–7%) has obvious and higher antibacterial activity against gram-positive bacteria Staphylococcus aureus within 2 days. The antibacterial effect against the gram-negative bacillus Escherichia coli is not as pronounced as against Staphylococcus aureus. The antibacterial effect of Cu2+ substituted Ca2+ with an atomic ratio of 0.1~1.0% is even better than that of Mg2+- and Zn2+- doped with 1~7% groups. In terms of cytotoxicity, nanoapatites with Cu2+ (~0.2%) exhibit cytotoxicity, whereas Mg2+- (1–5%) and Zn2+- (~1%) doped nanoapatites are biocompatible at low concentrations but become cytotoxic as ionic concentration increases. The results show that the hydrothermally synthesized nanoapatite combined with Cu2+ (0.2%), Mg2+ (3%), and Zn2+ (3%) exhibits low toxicity and high antibacterial activity, which provides a good prospect for bypassing antibiotics for future biomedical applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3