Modification of a Grain Moisture Conditioner into a Vacuum Steam Pasteurizer

Author:

Galad Marlon1,Eshkabilov Sulaymon1ORCID,Monono Ewumbua1

Affiliation:

1. Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA

Abstract

Eliminating microbes in low-moisture foods (LMFs) is challenging because this requires the preservation of their raw quality during pasteurization. Vacuum steam pasteurization (VSP) has been shown to be effective in reducing microbes while maintaining food quality. These studies were conducted at a laboratory scale where issues such as steam distribution, penetration, and condensation are not a concern, but in larger samples, these are of primary concern. Hence, this study repurposes a pilot-scale grain moisture conditioner (GMC) into a VSP system with the aim of replicating the lab-scale conditions in larger-scale applications. The modification entailed a series of design alterations, conducting a structural analysis of the conditioning chamber, creating a vacuum environment, ensuring uniform steam distribution, and designing and adding a preheater and a cooling system. Performance tests confirmed that the adapted system replicates the VSP’s lab-scale functionality. The results demonstrated that the VSP system can preheat to beyond 40 °C and achieve an absolute pressure of 11.7 kPa at 85 °C with a 344.7 Pa pressure increase per minute. Furthermore, steam distribution inside the chamber showed no significant variations, and rapid steam evacuation and chamber cooling could be performed simultaneously. The success of these modifications will be used in future experiments.

Funder

North Dakota Agricultural Experiment Station

USDA-NIFA Hatch multistate

The Department of Science and Technology, Engineering Research for Technology (DOST-ERDT), Philippines

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3