Recent Insights into the Measurement of Carbon Dioxide Concentrations for Clinical Practice in Respiratory Medicine

Author:

Umeda Akira,Ishizaka Masahiro,Ikeda Akane,Miyagawa Kazuya,Mochida AtsumiORCID,Takeda Hiroshi,Takeda KotaroORCID,Fukushi Isato,Okada Yasumasa,Gozal DavidORCID

Abstract

In the field of respiratory clinical practice, the importance of measuring carbon dioxide (CO2) concentrations cannot be overemphasized. Within the body, assessment of the arterial partial pressure of CO2 (PaCO2) has been the gold standard for many decades. Non-invasive assessments are usually predicated on the measurement of CO2 concentrations in the air, usually using an infrared analyzer, and these data are clearly important regarding climate changes as well as regulations of air quality in buildings to ascertain adequate ventilation. Measurements of CO2 production with oxygen consumption yield important indices such as the respiratory quotient and estimates of energy expenditure, which may be used for further investigation in the various fields of metabolism, obesity, sleep disorders, and lifestyle-related issues. Measures of PaCO2 are nowadays performed using the Severinghaus electrode in arterial blood or in arterialized capillary blood, while the same electrode system has been modified to enable relatively accurate non-invasive monitoring of the transcutaneous partial pressure of CO2 (PtcCO2). PtcCO2 monitoring during sleep can be helpful for evaluating sleep apnea syndrome, particularly in children. End-tidal PCO2 is inferior to PtcCO2 as far as accuracy, but it provides breath-by-breath estimates of respiratory gas exchange, while PtcCO2 reflects temporal trends in alveolar ventilation. The frequency of monitoring end-tidal PCO2 has markedly increased in light of its multiple applications (e.g., verify endotracheal intubation, anesthesia or mechanical ventilation, exercise testing, respiratory patterning during sleep, etc.).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference111 articles.

1. Climate change and infectious disease;Bernstein,2018

2. World Meteorological Organizationhttps://gaw.kishou.go.jp/publications/summary

3. On the determination of maximum permissible carbon dioxide concentrations in the air of apartment buildings and public buildings;Eliseeva;Gig Sanit.,1964

4. The Physiological Basis of Health Standards for Dwellings;Goromosov,1968

5. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3