Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time

Author:

Liu Hongyuan12ORCID,Wang Nana12,Wang Yanjun12,Li Ying12,Zhang Yan12,Qi Gaoxiang12,Dong Hongyun12,Wang Hongcheng12,Zhang Xijin12,Li Xinhua12

Affiliation:

1. National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China

2. National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China

Abstract

Biochar application is considered an effective method for reducing nitrous oxide (N2O) emissions from soil. However, the mechanisms underlying the influence of various biochar dosages on soil N2O emissions and the duration of one-time biochar application remain unclear. The effects of different biochar application rates and a one-time application on soil N2O emissions in the Huanghuaihai Plain of China were investigated through a field experiment from 2020 to 2022. In the wheat and maize rotation system, six treatments were administered: no biochar (C0); 2 (C1), 4 (C2), 8 (C3), and 12 t/hm2 biochar (C4) applied annually; and a one-time application of 12 t/hm2 biochar (CS) in 2018. Our results indicate that, compared with C0, biochar significantly inhibited soil N2O emissions, particularly in the C3 and C4 treatments, with reductions of 31.36–56.21% and 36.92–52.45%, respectively. However, CS did not significantly affect soil N2O emissions during the study period. These findings suggest that the biochar’s inhibitory effect on soil N2O emissions is contingent upon the dosage and frequency of application. A structural equation model revealed that biochar decreases soil N2O emissions by enhancing the reduction in N2O during denitrification. Under the conditions of this experiment, based on a logistic ecological model, a one-time application of 12 t/hm2 biochar was projected to significantly reduce soil N2O emissions for approximately 1.77 years. On the whole, biochar reduces soil N2O emissions mainly by regulating N2O production through denitrification, and the duration of this inhibition of N2O emissions mainly depends on the application amount and frequency of biochar application.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3