Neuromuscular Magnetic Field Measurement Based on Superconducting Bio-Sensors

Author:

Zhang Zhidan12ORCID,He Anran12,Xu Zihan12,Yang Kun12,Kong Xiangyan12ORCID

Affiliation:

1. The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China

2. The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China

Abstract

These years, disease-causing and disabling diseases have caused great concern. Neurological musculoskeletal disorders are diverse and affect people of a wide range of ages. And the lack of comprehensive diagnostic methods places a huge burden on healthcare systems and social economies. In this paper, the current status of clinical research on neuromuscular diseases is introduced, and the advantages of magnetic field measurement compared with clinical diagnostic methods are illustrated. A comprehensive description of the related technology of superconducting quantum interference devices (SQUIDs), magnetic field detection noise suppression scheme, the development trend of the sensor detection system, and the application and model establishment of the neuromuscular magnetic field is also given in this paper. The current research and development trends worldwide are compared simultaneously, and finally the conclusions and outlook are put forward. Based on the description of the existing literature and the ideas of other researchers, the next development trends and my own research ideas are presented in this paper, that is, starting from the establishment of a neuromuscular model, combining medical and industrial work, designing a sensor system that meets clinical needs, and laying the foundation for the clinical application of a bio-magnetic system. This review promotes a combination between medicine and industry, and guides researchers on considering the challenges of sensor development in terms of clinical needs. In addition, in this paper, the development trends are described, including the establishment of the model, the clinical demand for sensors, and the challenges of system development so as to give certain guidance to researchers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electromagnetic Propagation Characteristics of Submarine Cable Detection With Finite Element Analysis;IEEE Transactions on Applied Superconductivity;2024-11

2. The Simulation of OLED Current Detection Based on Scanning SQUID Microscope;IEEE Transactions on Applied Superconductivity;2024-11

3. Simulation and Parameter Optimization of Two-Dimensional SQUID Gradiometer;IEEE Transactions on Applied Superconductivity;2024-11

4. Comprehensive Compensation Scheme for Fetal Magnetocardiography Measurement;IEEE Transactions on Applied Superconductivity;2024-11

5. Inductance Matching in Axial SQUID Gradiometer and the Influence on Its Performance;IEEE Transactions on Applied Superconductivity;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3