Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance

Author:

Mezzanzanica Gianluca1ORCID,Français Olivier2ORCID,Mariani Stefano1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

2. Electronics, Communication systems and Microsystems (ESYCOM), Université Gustave Eiffel, National Centre of Scientific Research (CNRS), F-77454 Marne-la-Vallée, France

Abstract

Size sorting, line focusing, and isolation of microparticles or cells are fundamental ingredients in the improvement of disease diagnostic tools adopted in biology and biomedicine. Microfluidic devices are exploited as a solution to transport and manipulate (bio)particles via a liquid flow. Use of acoustic waves traveling through the fluid provides non-contact solutions to the handling goal, by exploiting the acoustophoretic phenomenon. In this paper, a finite element model of a microfluidic surface acoustic wave-based device for the manipulation of microparticles is reported. Counter-propagating waves are designed to interfere inside a PDMS microchannel and generate a standing surface acoustic wave which is transmitted to the fluid as a standing pressure field. A model of the cross-section of the device is considered to perform a sensitivity analysis of such a standing pressure field to uncertainties related to the geometry of the microchannel, especially in terms of thickness and width of the fluid domain. To also assess the effects caused by possible secondary waves traveling in the microchannel, the PDMS is modeled as an elastic solid material. Remarkable effects and possible issues in microparticle actuation, as related to the size of the microchannel, are discussed by way of exemplary results.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3