Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure

Author:

Chatterjee AryaORCID,Popov Dmitry,Velisavljevic Nenad,Misra Amit

Abstract

A state of the art, custom-built direct-metal deposition (DMD)-based additive manufacturing (AM) system at the University of Michigan was used to manufacture 50Cu–50Fe alloy with tailored properties for use in high strain/deformation environments. Subsequently, we performed preliminary high-pressure compression experiments to investigate the structural stability and deformation of this material. Our work shows that the alpha (BCC) phase of Fe is stable up to ~16 GPa before reversibly transforming to HCP, which is at least a few GPa higher than pure bulk Fe material. Furthermore, we observed evidence of a transition of Cu nano-precipitates in Fe from the well-known FCC structure to a metastable BCC phase, which has only been predicted via density functional calculations. Finally, the metastable FCC Fe nano-precipitates within the Cu grains show a modulated nano-twinned structure induced by high-pressure deformation. The results from this work demonstrate the opportunity in AM application for tailored functional materials and extreme stress/deformation applications.

Funder

National Nuclear Security Administration

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3