Performance Enhancement of Optimized Link State Routing Protocol by Parameter Configuration for UANET

Author:

Tuli Esmot AraORCID,Golam Mohtasin,Kim Dong-Seong,Lee Jae-MinORCID

Abstract

The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from features other than mobile ad hoc networks (MANET), such as aerial mobility in 3D space and frequently changing topology. This paper analyzes the performance of four topology-based routing protocols, dynamic source routing (DSR), ad hoc on-demand distance vector (AODV), geographic routing protocol (GRP), and optimized link state routing (OLSR), by using practical simulation software OPNET 14.5. Performance evaluation carries out various metrics such as throughput, delay, and data drop rate. Moreover, the performance of the OLSR routing protocol is enhanced and named “E-OLSR” by tuning parameters and reducing holding time. The optimized E-OLSR settings provide better performance than the conventional request for comments (RFC 3626) in the experiment, making it suitable for use in UAV ad hoc network (UANET) environments. Simulation results indicate the proposed E-OLSR outperforms the existing OLSR and achieves supremacy over other protocols mentioned in this paper.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. P4 FANET In-band Telemetry (FINT) for AI-assisted wireless link failure forecasting and recovery;Computer Networks;2024-08

2. Revolutionizing healthcare 5.0: Blockchain-driven optimization of drone-to-everything communication using 5G network for enhanced medical services;Technology in Society;2024-06

3. Control the Interval Estimation to Enhance the Performance of Optimized Link State Routing;2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2024-05-19

4. Analyzing energy efficiency of flying objects in Wireless Sensor and Mobile Ad Hoc Networks;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09

5. Disaster scenario optimised link state routing protocol and message prioritisation;IET Networks;2024-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3