A Contention-Based Hop-By-Hop Bidirectional Congestion Control Algorithm for Ad-Hoc Networks

Author:

Wang Jiashuai,Yang Xiaoping,Liu Ying,Qian Zhihong

Abstract

Existing hop-by-hop congestion control algorithms are mainly divided into two categories: those improving the sending rate and those suppressing the receiving rate. However, these congestion control algorithms have problems with validity and limitations. It is likely that the network will be paralyzed due to the unreasonable method of mitigating congestion. In this paper, we present a contention-based hop-by-hop bidirectional congestion control algorithm (HBCC). This algorithm uses the congestion detection method with queue length as a parameter. By detecting the queue length of the current node and the next hop node, the congestion conditions can be divided into the following four categories: 0–0, 0–1, 1–0, 1–1 (0 means no congestion, 1 means congestion). When at least one of the two nodes is congested, the HBCC algorithm adaptively adjusts the contention window of the current node, which can change the priority of the current node to access the channel. In this way, the buffer queue length of the congested node is reduced. When the congestion condition is 1–1, the hop-by-hop priority congestion control (HPCC) method proposed in this paper is used. This algorithm adaptively changes the adjustment degree of the current node competition window and improves the priority of congestion processing of the next hop node. The NS2 simulation shows that by using the HBCC algorithm, when compared with distributed coordination function (DCF) without congestion control, the proposed unidirectional congestion control algorithms hop-by-hop receiving-based congestion control (HRCC) and hop-by-hop sending-based congestion control (HSCC), and the existing congestion control algorithm congestion alleviation—MAC (CA-MAC), the average saturation throughput increased by approximately 90%, 62%, 12%, and 62%, respectively, and the buffer overflow loss ratio reduced by approximately 80%, 79%, 44%, and 79%.

Funder

The Special Fund Project of Jilin Province School Co-Construction Plan

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of RL -Based Adaptive Congestion Control Algorithm for Wireless Networks;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

2. Impact of Long-Range Dependent Traffic in IoT Local Wireless Networks on Backhaul Link Performance;Lecture Notes in Computer Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3