Abstract
Technological advancement has transformed traditional vehicles into autonomous vehicles. Autonomous vehicles play an important role since they are considered an essential component of smart cities. The autonomous vehicle is an intelligent vehicle capable of maintaining safe driving by avoiding crashes caused by drivers. Unlike traditional vehicles, which are fully controlled and operated by humans, autonomous vehicles collect information about the outside environment using sensors to ensure safe navigation. Autonomous vehicles reduce environmental impact because they usually use electricity to operate instead of fossil fuel, thus decreasing the greenhouse gasses. However, autonomous vehicles could be threatened by cyberattacks, posing risks to human life. For example, researchers reported that Wi-Fi technology could be vulnerable to cyberattacks through Tesla and BMW autonomous vehicles. Therefore, further research is needed to detect cyberattacks targeting the control components of autonomous vehicles to mitigate their negative consequences. This research will contribute to the security of autonomous vehicles by detecting cyberattacks in the early stages. First, we inject False Data Injection (FDI) attacks into an autonomous vehicle simulation-based system developed by MathWorks. Inc. Second, we collect the dataset generated from the simulation model after integrating the cyberattack. Third, we implement an intelligent symmetrical anomaly detection method to identify false data cyber-attacks targeting the control system of autonomous vehicles through a compromised sensor. We utilize long short-term memory (LSTM) deep networks to detect False Data Injection (FDI) attacks in the early stage to ensure the stability of the operation of autonomous vehicles. Our method classifies the collected dataset into two classifications: normal and anomaly data. The experimental result shows that our proposed model’s accuracy is 99.95%. To this end, the proposed model outperforms other state-of-the-art models in the same study area.
Funder
King Abdulaziz University
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference52 articles.
1. Conflict Management Algorithms Development Using the Automated Framework for Autonomous Vehicles;Sziroczák;Proceedings of the First Conference on ZalaZONE Related R & I Activities of Budapest University of Technology and Economics 2022, Budapest University of Technology and Economics,2022
2. A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction;Rahman;Proceedings of the EEE/PES Transmission and Distribution Conference and Exposition (T & D),2018
3. Time-Series Model for Forecasting Short-term Future Additions of Renewable Energy to Worldwide Capacity
4. Encryption scheme in portable electric vehicle charging infrastructure: Encryption scheme using symmetric key;Jang;Proceedings of the 4th International Conference on Computer Applications and Information Processing Technology (CAIPT),2017
5. A Real Time Node Connectivity Algorithm for Synchronous Cyber Physical and IoT Network Systems
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献