Distortion-Corrected Integral Imaging 3D Display System Based on Lens Array Holographic Optical Element

Author:

Li Jun-Hua,Zhang Han-Le,Ji Qing-Lin,Zhao Wu-Xiang

Abstract

We propose a distortion-corrected integral imaging (II) 3D display system based on lens array holographic optical element (LAHOE). The LAHOE is used as a projection screen. The projection beam of the LAHOE is parallel light. Hence, the projection system consists of a spatial light modulator, a reverse projection lens, a relay optical element, and a telecentric lens. The acquired 3D data and the reconstructed 3D image of II are symmetrically related to each other. Therefore, there is lens distortion in the projection system. To avoid affecting the viewing experience of the viewers, the elemental image array (EIA) is projected obliquely on the LAHOE, causing the lateral distortion of the EIA. There is a position deviation in the projection system, so the projected EIA has geometric deformation. Due to the distortion of the EIA, it is difficult to precisely align the projected EIA and LAHOE, which results in serious flip of the reconstructed 3D images. The distortion of the EIA affects the asymmetry of the 3D image reconstruction. Lens distortion can be solved by the distortion compensation method. Lateral and the geometric deformation can be solved by the perspective transformations in computer graphics. After correction, the undistorted EIA is projected, and the projected EIA on the LAHOE has little distortion. In the process of 3D image reconstruction, the causes of asymmetry affecting 3D image reconstruction are analyzed, and the issues that generate these asymmetric factors are addressed. Experimental results indicate that a better 3D display effect is achieved.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Applied Basic Research Program of Sichuan province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3