Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation

Author:

Schoder StefanORCID,Maurerlehner PaulORCID,Wurzinger Andreas,Hauser Alexander,Falk SebastianORCID,Kniesburges StefanORCID,Döllinger MichaelORCID,Kaltenbacher Manfred

Abstract

The flow-induced sound sources of human voice production are investigated based on a validated voice model. This analysis is performed using a hybrid aeroacoustic workflow based on the perturbed convective wave equation. In the first step, the validated 3D incompressible turbulent flow simulation is computed by the finite volume method using STARCCM+. In a second step, the aeroacoustic sources are evaluated and studied in detail. The formulation of the sound sources is compared to the simplification (neglecting the convective sources) systematically using time-domain and Fourier-space analysis. Additionally, the wave equation is solved with the finite element solver openCFS to obtain the 3D sound field in the acoustic far-field. During the detailed effect analysis, the far-field sound spectra are compared quantitatively, and the flow-induced sound sources are visualized within the larynx. In this contribution, it is shown that the convective part of the sources dominates locally near the vocal folds (VFs) while the local time derivative of the incompressible pressure is distributed in the whole supra-glottal area. Although the maximum amplitude of the time derivative is lower, the integral contribution dominates the sound spectrum. As a by-product of the detailed perturbed convective wave equation source study, we show that the convective source term can be neglected since it only reduces the validation error by 0.6%. Neglecting the convective part reduces the algorithmic complexity of the aeroacoustic source computation of the perturbed convective wave equation and the stored flow data. From the source visualization, we learned how the VF motion transforms into specific characteristics of the aeroacoustic sources. We found that if the VFs are fully closing, the aeroacoustic source terms yield the highest dynamical range. If the VFs are not fully closing, VFs motion does not provide as much source energy to the flow-induced sound sources as in the case of a healthy voice. As a consequence of not fully closing VFs, the cyclic pulsating velocity jet is not cut off entirely and therefore turbulent structures are permanently present inside the supraglottal region. These turbulent structures increase the broadband component of the voice signal, which supports research results of previous studies regarding glottis closure and insufficient voice production.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3