Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia

Author:

Chiang Bing-Juin,Liao Chun-HouORCID,Mao Su-Han,Chien Chiang-TingORCID

Abstract

(1) Background: We established a new bladder ischemia rat model through bilateral partial iliac arterial occlusion (BPAO) and investigated the therapeutic effect of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs); (2) Methods: The study included four groups: (1) sham, (2) BPAO, (3) BPAO + ADSCs, and (4) BPAO + ADSC-derived MVs. Female Wistar rats with BPAO were injected with ADSCs or ADSC-derived MVs through the femoral artery. Doppler flowmetry and real-time laser speckle contrast imaging were performed to quantify blood flow in the common iliac arteries and bladder microcirculation. A 24-h behavior study and transcystometrogram were conducted after 2 weeks. Bladder histology, immunostaining, and lipid peroxidation assay were performed. The expressions of P2X2, P2X3, M2, and M3 receptors and nerve growth factor (NGF) were evaluated; (3) Results: BPAO significantly reduced bladder microcirculation, intercontraction interval (ICI), and bladder volume and increased the amplitude of nonvoiding contraction, neutrophil infiltration, and malondialdehyde and NGF levels. ADSCs and ADSC-derived MVs significantly ameliorated these effects. The results of Western blot showed that the BPAO group exhibited the highest expression of M3 and P2X2 receptors. ADSCs significantly attenuated the expressions of M2 and P2X2 receptors. ADSC-derived MVs significantly attenuated the expressions of M3 and P2X2 receptors; (4) Conclusions: ADSCs and ADSC-derived MVs ameliorated the adverse effects of BPAO including bladder overactivity, bladder ischemia, and oxidative stress. Inflammation, muscarinic signaling, purinergic signaling, and NGF might be involved in the therapeutic mechanism.

Funder

Ministry of Science of Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3