Investigation of the Optical, Physical, and Chemical Interactions between Diammonium Hydrogen Phosphate (DAP) and Pigments

Author:

Ma XiaoORCID,Pasco Hélène,Balonis Magdalena,Kakoulli IoannaORCID

Abstract

This research investigates and evaluates the optical, physical, and chemical interactions between a diammonium hydrogen phosphate (DAP) solution and seven pigments commonly encountered in archaeological and historic fresco and secco wall paintings and polychrome monuments. The pigments include cinnabar, French ochre, chalk, lapis lazuli, raw sienna, burnt umber, and red lead. The raw pigments were analyzed before and after the interaction with the DAP solution, and the reaction products resulting from the contact of the pigments with the DAP solution were evaluated to obtain a comprehensive understanding of the effects of diammonium phosphate on the color, morphology, and chemical composition of the pigments. The results indicated no significant changes of the color or of the chemistry of cinnabar, French ochre, and lapis lazuli. Carbonate-containing primary and secondary (found as impurities in earth pigments) pigments, such as chalk and calcium carbonate, were transformed into calcium phosphate, though without a significant change in color. Phase and strong color changes occurred only for the red lead pigment, associated with the transformation of red lead into hydroxypyromorphite. These data established the parameters and identified the risks of the direct application of DAP solutions on pigments. Further research will be undertaken to assess the potential use of DAP as a consolidant of wall paintings and other polychrome surfaces through testing on wall painting/polychromy mockups and on-site archaeological/historic painted surfaces.

Funder

National Science Foundation (NSF)

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference81 articles.

1. Cinnabar alteration in archaeological wall paintings: an experimental and theoretical approach

2. The paint layers of mural paintings at Abydos Temples-Egypt: A closer look at the materials used;Al-Emam;Mediterr. Archaeol. Archaeom.,2015

3. Dehydration of gypsum component of plasters and stuccos in some Egyptian archaeological buildings and evaluation of K2SO4 activator as a consolidant;Kamel;Sci. Cult.,2019

4. In Review: An Assessment of Florentine Methods of Wall Painting Conservation Based;Matteini,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3