Abstract
Ozone concentrations are key indicators of air quality. Modeling ozone concentrations is challenging because they change both spatially and temporally with complicated structures. Missing data bring even more difficulties. One of our interests in this paper is to model ozone concentrations in a region in the presence of missing data. We propose a method without any assumptions on the correlation structure to estimate the covariance matrix through a dimension expansion method for modeling the semivariograms in nonstationary fields based on the estimations from the hierarchical Bayesian spatio-temporal modeling technique (Le and Zidek). Further, we apply an entropy criterion (Jin et al.) based on a predictive model to decide if new stations need to be added. This entropy criterion helps to solve the environmental network design problem. For demonstration, we apply the method to the ozone concentrations at 25 stations in the Pittsburgh region studied. The comparison of the proposed method and the one is provided through leave-one-out cross-validation, which shows that the proposed method is more general and applicable.
Subject
General Physics and Astronomy
Reference12 articles.
1. Spatial prediction and temporal backcasting for environmental fields having monotone data patterns
2. Hierarchical Bayesian spatial-temporal modeling of regional ozone concentrations and respecitve network design;Jin;J. Environ. Stat.,2012
3. Model-Based Geostatistics;Diggle,2007
4. Generalized least‐squares in dimension expansion method for nonstationary processes
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献