Impacts of Green Synthesis Process on Asymmetric Hybrid PDMS Membrane for Efficient CO2/N2 Separation

Author:

Zhuang Guo-LiangORCID,Wu Chao-Fong,Wey Ming-Yen,Tseng Hui-HsinORCID

Abstract

The effects of green processes in hybrid polydimethylsiloxane (PDMS) membranes on CO2 separation have received little attention to date. The effective CO2 separation of the membranes is believed to be controlled by the reaction and curing process. In this study, hybrid PDMS membranes were fabricated on ceramic substrates using the water-in-emulsion method and evaluated for their gas transport properties. The effects of the tetraethylorthosilicate (TEOS) concentration and curing temperature on the morphology and CO2 separation performance were investigated. The viscosity measurement showed that, at specific reaction times, it is benefit beneficial to fabricate the symmetric hybrid PDMS membranes with a uniform and dense selective layer on the substrate. Moreover, the a high TEOS concentration can decrease the reaction time and obtain create the a fully crosslinked structure, allowing more efficient CO2/N2 separation. The separation performance was furtherly improved with in the membrane prepared at a high curing temperature of 120 °C. The developed membrane shows excellent CO2/N2 separation with a CO2 permeance of 27.7 ± 1.3 GPU and a CO2/N2 selectivity of 10.3 ± 0.3. Moreover, the membrane shows a stable gas separation performance of up to 5 bar of pressure.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3