Role of Fe/Co Ratio in Dual Phase Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 Composites for Oxygen Separation

Author:

Fischer Liudmila12,Ran Ke34,Schmidt Christina5,Neuhaus Kerstin5ORCID,Baumann Stefan1ORCID,Behr Patrick1,Mayer Joachim34,Bouwmeester Henny J. M.2,Nijmeijer Arian2,Guillon Olivier16,Meulenberg Wilhelm A.12

Affiliation:

1. Institute of Energy and Climate Research IEK-1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

2. Faculty of Science and Technology, Inorganic Membranes, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. Central Facility for Electron Microscopy GFE, RWTH Aachen University, 52074 Aachen, Germany

4. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons ER-C, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

5. Institute of Energy and Climate Research IEK-12, Forschungszentrum Jülich GmbH Helmholtz-Institute Münster, 48149 Münster, Germany

6. Jülich Aachen Research Allianc JARA-Energy, 52425 Jülich, Germany

Abstract

Dual-phase membranes are increasingly attracting attention as a solution for developing stable oxygen permeation membranes. Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 (CGO-F(3−x)CxO) composites are one group of promising candidates. This study aims to understand the effect of the Fe/Co-ratio, i.e., x = 0, 1, 2, and 3 in Fe3−xCoxO4, on microstructure evolution and performance of the composite. The samples were prepared using the solid-state reactive sintering method (SSRS) to induce phase interactions, which determines the final composite microstructure. The Fe/Co ratio in the spinel structure was found to be a crucial factor in determining phase evolution, microstructure, and permeation of the material. Microstructure analysis showed that all iron-free composites had a dual-phase structure after sintering. In contrast, iron-containing composites formed additional phases with a spinel or garnet structure which likely contributed to electronic conductivity. The presence of both cations resulted in better performance than that of pure iron or cobalt oxides. This demonstrated that both types of cations were necessary to form a composite structure, which then allowed sufficient percolation of robust electronic and ionic conducting pathways. The maximum oxygen flux is jO2 = 0.16 and 0.11 mL/cm2·s at 1000 °C and 850 °C, respectively, of the 85CGO-FC2O composite, which is comparable oxygen permeation flux reported previously.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3