Advances in Mass Spectrometry on Membrane Proteins

Author:

Yang Hsin-Chieh1ORCID,Li Weikai2,Sun Jie1ORCID,Gross Michael L.1

Affiliation:

1. Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA

2. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA

Abstract

Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins’ dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein–membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.

Funder

National Institutes of Health

American Heart Association

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perspective Chapter: Predictive Genomics;Mass Spectrometry - Recent Advances and Key Aspects [Working Title];2024-01-03

2. Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting;Journal of the American Society for Mass Spectrometry;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3