Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment

Author:

Trombino Sonia,Curcio FedericaORCID,Di Gioia Maria LuisaORCID,Armentano Biagio,Poerio TeresaORCID,Cassano RobertaORCID

Abstract

In this work, bio-based membranes prepared using a crosslinked β-glucans–chitosan dispersed in the chitosan matrix useful in promoting wound healing were studied for the first-time. Wound healing is a process that includes sequential steps designed to restore the structure and function of damaged cells and tissue. To minimize damage and the risk of infection during the healing process and to promote restoration of the integrity of damaged tissue, the wound should be dressed. Generally, according to their function in the wound, dressings are classified on the basis of type of material and physical form. The substances used to make a dressing are generally natural polymers such as hydrocolloids, alginates, polyurethane, collagen, chitosan, pectin and hyaluronic acid. The combination of polymeric substances, with antibacterial and antioxidant properties, could be exploited in the biomedical field for the development of biocompatible materials able to act as a barrier between the wound and the external environment, protecting the site from bacterial contamination and promoting healing. To this aim, bio-based membranes were prepared by the phase inversion induced by solvent evaporation, using the crosslinked β-glucans–chitosan obtained by esterification reactions as a functional additive in the chitosan membrane. The reaction intermediates and the final products were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) while the morphological properties of membranes were analyzed using electronic scanning microscopy (SEM). The chemical bonding between chitosan and β-glucans allowed for the obtainment of a better dispersion of the combined new material into the membrane’s matrix and as a consequence, an enhanced antibacterial property evaluated through in vitro tests, with respect to the starting materials.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3