Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study

Author:

Nilkar Amit12,Orme Christopher1,Klaehn John1,Zhao Haiyan2,Adhikari Birendra1ORCID

Affiliation:

1. Chemical Separations Group, Material Separation and Analysis Department, Idaho National Laboratory (INL), Idaho Falls, ID 83415, USA

2. Department of Chemical and Biological Engineering, The University of Idaho, Moscow, ID 83844, USA

Abstract

Carbon capture has been an important topic of the twenty-first century because of the elevating carbon dioxide (CO2) levels in the atmosphere. CO2 in the atmosphere is above 420 parts per million (ppm) as of 2022, 70 ppm higher than 50 years ago. Carbon capture research and development has mostly been centered around higher concentration flue gas streams. For example, flue gas streams from steel and cement industries have been largely ignored due to lower associated CO2 concentrations and higher capture and processing costs. Capture technologies such as solvent-based, adsorption-based, cryogenic distillation, and pressure-swing adsorption are under research, but many suffer from higher costs and life cycle impacts. Membrane-based capture processes are considered cost-effective and environmentally friendly alternatives. Over the past three decades, our research group at Idaho National Laboratory has led the development of several polyphosphazene polymer chemistries and has demonstrated their selectivity for CO2 over nitrogen (N2). Poly[bis((2-methoxyethoxy)ethoxy)phosphazene] (MEEP) has shown the highest selectivity. A comprehensive life cycle assessment (LCA) was performed to determine the life cycle feasibility of the MEEP polymer material compared to other CO2-selective membranes and separation processes. The MEEP-based membrane processes emit at least 42% less equivalent CO2 than Pebax-based membrane processes. Similarly, MEEP-based membrane processes produce 34–72% less CO2 than conventional separation processes. In all studied categories, MEEP-based membranes report lower emissions than Pebax-based membranes and conventional separation processes.

Funder

Idaho National Laboratory

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3