High-Performance γ-Al2O3 Multichannel Tube-Type Tight Ultrafiltration Membrane Using a Modified Sol-Gel Method

Author:

Naseer Danyal12ORCID,Ha Jang-Hoon1,Lee Jongman12ORCID,Lee Hong Joo1,Song In-Hyuck12ORCID

Affiliation:

1. Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea

2. Department of Advanced Materials Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea

Abstract

We introduced a modified sol-gel method using polyvinyl alcohol (PVA) as an additive to improve the permeability of γ-Al2O3 membranes by minimizing the thickness of the selective layer and maximizing the porosity. First, the analysis revealed that the thickness of γ-Al2O3 decreased as the concentration of PVA increased in the boehmite sol. Second, the properties of the γ-Al2O3 mesoporous membranes were greatly influenced by the modified route (method B) compared to the conventional route (method A). The results showed that the porosity and surface area of the γ-Al2O3 membrane increased, and the tortuosity decreased considerably using method B. This effect was attributed to the adsorption of PVA molecules on the surface of the boehmite particles, which depended on the synthesis route. The experimentally determined pure water permeability trend and the Hagen–Poiseuille mathematical model confirmed that the modified method improved the performance of the γ-Al2O3 membrane. Finally, the γ-Al2O3 membrane fabricated via a modified sol-gel method with a pore size of 2.7 nm (MWCO = 5300 Da) exhibited a pure water permeability of over 18 LMH/bar, which is three times higher than that of the γ-Al2O3 membrane prepared using the conventional method.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3