Abstract
The new polymer inclusion membrane (PIM) with ethylenediamine-bis-acetylacetone (EDAB-acac) matrix was used for the separation of Zn(II) solutions containing non-ferrous metal ions (Co(II), Ni(II) Cu(II), Cd(II)). The effective conditions for carrying out transport studies by PIMs were determined on the basis of solvent extraction studies. The values of the stability constants and partition coefficients of M(II)-EDAB-acac complexes were determined from the extraction studies. The stability constants increase in series Ni(II) < Cu(II) < Co(II) < Cd(II) < Zn(II), and their logarithms are 8.85, 10.61, 12.73, 14.50, and 16.84, respectively. The transport selectivity of the PIMs were: Zn(II) > Cd(II) > Co(II) > Cu(II) > Ni(II). The established stability constants of the complexes also decrease in this order. The values of three parameters: initial flux, selectivity coefficient, and recovery factor of a given metal after 12 h were selected for the comparative analysis of the transport process. The highest values of the initial fluxes were received for Zn(II), Cd(II), and Co(II). They are, depending on the composition of the mixture, in the range 9.87–10.53 µmol/m2, 5.26–5.61 µmol/m2, and 7.43–7.84 µmol/m2 for Zn(II), Co(II), and Cd(II), respectively. The highest recovery factors were observed for Zn(II) ions (90–98.0%). For Cd, Co and Cu, the recovery factors are high and are within the range 76–83%, 64–79%, and 51–66%, respectively.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献