Effect of Drying Temperature on Physical, Chemical, and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films

Author:

Al-Harrasi AhmedORCID,Bhatia Saurabh,Al-Azri Mohammed Said,Ullah SanaORCID,Najmi Asim,Albratty Mohammed,Meraya Abdulkarim M.ORCID,Mohan SyamORCID,Aldawsari Mohammed F.ORCID

Abstract

The drying temperature is one of the crucial parameters that impacts the physical, chemical, and biological properties of edible films (EFs). This parameter determines the degree of crystallinity, which can further impact the film’s mechanical, barrier, and optical properties. The present work is designed to investigate the effect of different drying temperature conditions (25 °C and 45 °C) on ginger essential oil (GEO) loaded Gelatin-sodium alginate composite films over their physical, chemical, and antioxidant properties. Results indicated that drying of films at 25 °C had a positive effect on certain properties of the EFs, such as the moisture content (MC), water solubility (S), swelling degree (SD), water vapor permeability (WVP), and mechanical and optical properties. SEM analysis showed that films dried at 25 °C presented more uniform surface properties with fewer cracks and pores compared to films dried at 45 °C. TGA analysis demonstrated the higher thermal stability of the films when dried at 25 °C. Findings obtained from X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR) showed film crystallinity and electrostatic interactions between GE, SA, and GEO. Results obtained from antioxidant assays revealed that films dried at 25 °C showed comparable antioxidant capacity to that of butylated hydroxytoluene (BHT). Furthermore, it was found that the addition of SA and GEO to the blank GE films improved their physical, chemical, and antioxidant properties. The present work suggests that GEO loaded GE-SA based films showed better physical, chemical, and antioxidant potential when dried at a lower temperature. These novel materials can be utilized as potential packaging materials in the food industry.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3